- Home
- Participant Homepage
- Course Offers
- Current Course Programme
- Operating Systems & Programming
- macOS: Fundamentals
- macOS: Efficiently use on-board Mac tools
- macOS: Backup, Security and System Maintenance
- macOS: Power User
- Python - Basics
- Python - Intermediate
- Science IT - Linux Command Line
- TheAlternative.ch - LinuxDays Install Event
- UZH365 – First steps with Power Automate
- Windows 10 operating system: Windows Backup
- Windows 10 operating system: Windows fundamentals
- Windows 10 operating system: System know-how
- Windows 10 operating system: Using Windows efficiently
- Image Editing, Illustration and Presentation
- Collaboration, Social Media and Webpublishing
- Accessibility@UZH in the CMS
- Images for your CMS Website
- UZH CMS Introduction Magnolia
- Introduction to programming with PHP
- Creating and Publishing Web Pages
- Basic Introduction to JavaScript
- UZH365 - Task management with Microsoft Planner
- Basics of collaboration in the UZH365 Cloud
- UZH365 - Grundlagen der Zusammenarbeit mit Microsoft Teams
- UZH365 - Microsoft Outlook (im Web) Grundlagen
- UZH365 - Mit Outlook Desktop für Mac einfach zusammenarbeiten
- UZH365 - Onlinebesprechungen mit Teams produktiv gestalten
- UZH365 - Outlook Desktop Productivity Training
- Data Science
- Einführungskurs in das Statistikpaket SPSS
- Introduction to Programming with MATLAB
- Introduction to Text Analytics with Python
- Learn spatial programming with QGIS and Python
- Python - Data Analysis Essentials
- QGIS Desktop Basics
- Qualitative Datenanalyse mit MAXQDA
- R: Basic Introduction
- R: Crash Course in Statistics using R
- R: Reporting using R Markdown
- R: tidyverse for Data Science
- R: Web Scraping
- Stata: Introduction
- UZH365 - Datenanalyse und Visualisierung mit PowerBI
- Databases, Spreadsheet
- MS Excel 365: Basis (Mac)
- MS Excel 365: Basis (Windows)
- MS Excel 365: Datenanalyse und Datenvisualisierung (Mac)
- MS Excel 365: Datenanalyse und Datenvisualisierung (Windows)
- MS Excel 365: Formeln und Funktionen (Mac)
- MS Excel 365: Formeln und Funktionen (Windows)
- ZI Coding School: Einführung in SQL und Datenbankdesign
- E-Learning
- Scientific Computing
- Text Processing & Publishing
- Knowledge Management
- Course Offers
- Data Science
- R: Web Scraping
R: Web Scraping
Collecting and preprocessing data is always the first step in a data analysis project or in a machine learning pipeline. The web plays a crucial role here: Often, authoritative statistical data are published as tables on regularly updated websites. Data found on social networks might provide valuable ground truth for training machine learning algorithms. However, gathering data from websites is often not that straightforward and requires an understanding of the architecture of the web.
In this course, you'll learn how to leverage R to collect and parse data found on various kinds of websites. By doing so, you'll get to know typical website architectures and how to approach them efficiently for scraping. The first part of the course will be held remotely and will introduce various concepts and R functions, while the second part will be held on site, where you'll be faced with some hands-on scraping challenges.
General information
Duration | 12 hours |
---|
Introduction of different R packages for scraping (httr and rvest)
How to parse tabular data on websites into R data frames
Scraping best practices
Where to go from here & approaches for more complicated websites
- ARE - R: Basic Introduction
- ARF - R: tidyverse for Data Science
Dates
Code | Referents | Dates | Available seats | Place | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
There are currently no open courses |
Please note before booking
Before booking your course, please note our General Conditions of Participation (pdf, 92 KB) but especially our Fair Play: Registration and Deregistration (pdf, 299 KB).... Thank you very much!Contact
E-mail: training@zi.uzh.chContact details
Course programme of the FS23:
The program for the spring semester 2023 (pdf in German, 475 KB) will be online from January. Registration is possible from 01.02.2023 (during the night from approx. 01:00)CMS, OLAT and Science IT courses also allow prior registration