- Home
- Teilnehmenden Homepage
- Kursangebote
- Aktuelles Kursprogramm
- Betriebssysteme, Programmieren
- Python: Automatisierung, Web-Scraping, Bildbearbeitung
- Digitale Selbstverteidigung: Einführung in die IT-Sicherheit für Anwender:innen
- Linux: Bash Workshop (TheAlternative.ch)
- Python: Machine Learning for Beginners
- Linux: Introduction to Open Source Software (TheAlternative.ch)
- Git: Continuous Integration und Deployment in GitLab@UZH
- Python: Basics
- Python: Intermediate
- Microsoft Power Automate: Digitalisierung erster Prozesse
- Science IT: Linux Command Line
- Bildbearbeitung, Illustration und Präsentation
- Collaboration, Social Media und Webpublishing
- CMS: Barrierefreie Webseiten erstellen
- Social Media und Wissenschaftskommunikation
- Bilder für den Webauftritt
- CMS-Einführung Magnolia
- Erstellen und Publizieren von Webseiten
- JavaScript: Grundlagen
- Microsoft Planner: Aufgabenmanagement mit Kanban
- UZH365: Erstellen Sie mit SharePoint Webpages, Bibliotheken und Lists ein Intranet
- UZH365: Grundlagen der Zusammenarbeit in der Cloud
- UZH365: Effektive Kommunikation mit Teams Telefonie
- UZH365: Microsoft Outlook (im Web) Grundlagen
- UZH365: Outlook Desktop Productivity Training
- UZH365: SharePoint Grundlagen
- TOPdesk: Hands-on Essentials
- Data Science
- QGIS: Räumliche Datenanalyse und Kartenerstellung
- Python: Introduction to Natural Language Processing (NLP)
- Python: For the Digital Humanities
- Einführungskurs in das Statistikpaket SPSS
- Introduction to Programming with MATLAB
- Python: Data Analysis Essentials
- R: Basic Introduction
- Qualitative Datenanalyse mit MAXQDA
- R: Crash Course in Statistics using R
- R: Reporting using Quarto & R Markdown
- R: tidyverse for Data Science
- UZH365: Datenanalyse und Visualisierung mit PowerBI
- Datenbanken, Tabellenkalkulation
- E-Learning & Examination
- OLAT: Für Kursautor:innen
- OLAT 6: Neue Funktionen und Kursbausteine
- Inspera: Kurzeinblick für Prüfungsadministrator:innen
- Inspera: Für Neueinsteigende
- Inspera: Für Fortgeschrittene
- Kaltura: Videos für die UZH produzieren, interaktiv gestalten und publizieren
- KlickerUZH: Introduction and Didactic Use Cases
- Scientific Computing
- Textverarbeitung, Publishing
- Wissensmanagement
- Git and Gitlab: Introduction
- Obsidian: Wissensmanagement mit Markdown-Notizen
- EndNote: Introduction to reference management
- Mendeley: Literaturverwaltung für Studium und Forschung
- OneNote: Alles organisiert – im Beruf, im Studium und Privat
- Zotero: Literaturverwaltung und Wissensorganisation
- Zotero: Wissenschaftlich effizient schreiben
- UZH365: Digitale Kommunikation und Zusammenarbeit
- IT Kurse von weiteren Organisationseinheiten der UZH
- Lunchveranstaltungen
- Kursraum-Informationen
Python: For the Digital Humanities
Digital Humanities lies at the intersection of traditional Humanities research (close reading) and Computational Methodologies (distant reading). It is an interdisciplinary field currently expanding and overlapping with neighboring areas such as Computational Social Science or Digital Journalism. In this course we will explore how Digital Humanities uses a wide range of computational methodologies with Python that allow users to perform tasks such as data acquisition (webscraping), data analysis (cleaning and pre-processing, POS tagging, NER), data storage (learning how to save our data (raw and processed) in CSV and txt files), data visualization (Geospatial Analysis), and Network Analysis.
In this introductory course, students will explore the basics of text analytics applied to Digital Humanities using several Python libraries such the Natural Language Toolkit (NLTK), Pandas, or BeautifulSoup (among others). Course content is disseminated over 12 hours through slides, live coding of the instructor and in-class exercises. We will use the Jupyter Notebooks interface provided by the Anaconda Environment.
Allgemeine Informationen
Dauer | 12 hours |
---|
- Data acquisition (webscraping), data cleaning and pre-processing, data storage
- Information extraction (POS tagging, Name Entity Recognition)
- Geospatial analysis
- Network Analysis
- understand the basics of data acquisition for Digital Humanities Projects.
- apply text pre-processing techniques for cleaning and preparing textual data.
- understand the basics of POS tagging and Name Entity Recognition (NER)
- gain a basic understanding of Geospatial Analysis.
- Introduction to Network Analysis with Python (Sociocentric and Egocentric Networks).
Kursdaten
Code | Referierende | Daten | Plätze frei | Ort | |
---|---|---|---|---|---|
HS24-APPH1 | Fernandez Fernandez Elena |
07.01.2025
-
28.01.2025
(17:00 - 20:00 Uhr)
|
7 | Online-Kurs | zur Anmeldung |